Update to WQGIT 6/22/2020 presentation with:

- Additional graphics showing combined N and P
- An additional option for WWTP line at 8 and 4 mg/l
 - An analysis of WIP load trends vs climate loads

3

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

S

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

6

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

3.3

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

. ~

Question from WQGIT

- Assuming more of the same types of practices that are in our WIPs are implemented for climate change...
 - And
- Assuming we aim at the nitrogen reduction
- Will we hit the P reduction?

2:

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

2.3

Year and watershed loads decisions

- At the 6/22/2020 WQGIT, members indicated strong interest in the 'year 2025' scenarios. There was also considerable interest in the 'watershed loads first' scenario.
- If these two scenarios are chosen, then there is no allocation beyond the watershed loads and there is no need to choose a WWTP scenario.
- The WWTP scenarios that specify concentrations for the WWTP line (6and4, 6and4.5, 8and4) cause the 'all other' line to decrease for the '2025 watershed load first' scenarios.

24

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

2.2

WQGIT Climate Allocation Decisions

- Year
 - 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

2010

WWTP Scenario	NPS only	MPS only	NPS only	NPS only	NPS only	NPS only	NPS only	NPS only	NPS+PS	NPS+PS	NPS+PS	NPS+PS	NPS-PS	NPS4PS	NPS+PS	NP5+25
Year	2025	2035	2025	2035	2025	2035	2025	2035	2025	2035	2025	2035	2025	2005	2025	2035
Watershed First	Wo	No	List	:Jst	No	No	.3st	ប្បធ	No	No	119	1,181	No	Ro	1.181	UIST
State	TN	m	TN	TN	ŢÞ.	79	10	7P	TN	TN:	TN	784	77	m	TP.	ηp
DC	0.003	0.007	0.006	0.007	0.001	0.002	0.001	0.001	0.152	0.316	0.006	0.046	0.018	0.037	0.001	0.008
DE	0.212	0.442	9.036	0.138	0.005	9.010	6.003	0.007	0.116	0.242	0.036	0.112	0.002	0.004	0.003	0.007
MD	1.154	2.426	1.061	1.905	8.079	0.164	0.111	0.235	1,590	3.315	1.661	2.037	0.307	0.222	0.111	0.242
NY	0.242	8,564	0,699	1.202	0.013	0.026	0.044	0.087	0.201	0.420	0.699	1.191	0.011	0.023	0.044	0.087
PA	2.298	4.789	1.683	3.518	0.103	0.214	0.095	0.287	1,740	3.627	1.683	3.472	9.069	0.143	0.095	9.278
VA	0.957	1,995	1.476	3.009	0.137	0.285	0.337	0.733	1.497	3.121	1.476	3.151	0.179	0.374	0.337	0.745
WV	0.138	0.288	-0.054	0.308	0.012	0.025	0.009	0.053	0.103	0.214	-0.054	8.299	800.0	0.616	8.009	0.052
Tesal	5.015	10.451	4.908	10.187	0.348	0.726	0.599	1,404	5,400	13.255	4,908	30.288	0.393	0.818	0.599	1.415
			See Note1	Ĺ			See Note I	į			See Note3				See Note1	
Bassa																
Eastern Shore	0.864417	1.801541	9.429677	0.81372	0.040842	0.084076	0.040226	0.075385	0.527777	1.099946	0.429677	0.72526	0.019116	0.039839	0.040226	0.069808
lames	0.271387	0.5656	0.280561	0.925384	0.044023	0.091748	0.143634	8.342765	0.708524	1.476643	0.280561	1.040252	0.100295	0.209026	0.143634	0.357551.
Patuxent	0.064831	0.135116	0.103577	0.13694	0.008464	0.01764	0.019284	0.029576	0.103372	0.215439	0.103577	0.147067	0.011453	0.023869	0.019284	0.030362
Potomac	1.047098	2.382267	0.707406	2.499677	0.111695	0.232785	6.122763	0.417721	1.402422	2.922803	0.707406	2.549047	0.128673	0.268168	0.122763	0.422182
Reppaharmock	0.168514	0.351202	0.505335	0.686219	0.019654	0.041586	0.101875	0.14204	0.131813	0.274713	0.505335	0.676575	0.010994	0.022912	0.101875	0.139686
Susquehanna	2.358417	4.915202	2.430968	4.570716	0.109634	0.215984	0.132932	8.335222	3.837232	3.787311	2.490968	4.428507	0.073427	0.15303	0.132932	0.327285
Western Shore	0.128057	0.255885	0.290333	0.380077	0.010137	0.021127	0.020412	0.032539	0.605963	1.262893	0.290333	0.505657	0.039504	0.06233	0.020412	0.040255
York	0.112106	0.233641	0.159674	0.21824	0.010195	0.021248	0.017921	0.029137	0.103232	6.215146	0.159674	0.215908	6.00915	0.019069	0.017921	0.028862
Total	5.014827	10,45145	4.90753	10.18697	0.348443	0.726195	0.599046	1.404386	5.400335	11.2549	4.90753	10.28827	0.39261	0.818242	0.599046	1.415991
State Basin	Load reduction options 2020 06 25.xl						xlsx									
DC Patomac	0.003406	0.007099	0.006281	0.006793	0.000779	0.001624	0.000707	0.001268	0.151712	0.316185	0.006281	0.045763	0.017542	0.03656	0.000707	6.005673
DE Eastern Shore	0.212187	0.442222	0.035813	0.137576	0.004837	0.010081	0.003065	0.007475	0.116319	0.242422	0.035813	0.112385	0.001873	0.003903	0.003065	0.006696
MD Eastern Shore	0.575263	1.198912	0.34271	0.587156	0.031274	0.065178	0.03191	0 058228	0.362282	0.755037	8 34271	0.531201	0.015135	0.030543	0.03191	0.053987
MD Patusent	0.064831	0.135116	0.103577	0.13694	0.008464	0.01764	0.019284	0.029976	0.103372	0.215439	0.103577	0.147067	0.011453	0.023869	0.019284	0.030362
MD Potomac	0.351102	0.733736	0.197433	0.62567	0.02686	0.05598	0.03256	0.102778	0.493511	1.028532	0.397433	0.663091	6.039916	0.083189	0.03256	6.106209
MD Susquehanna	0.045854	0.095564	0.13016	0.18092	0.003825	0.003903	0.007059	0.011646	0.025796	0.053741	0.13016	0.175647	0.000648	0.001351	0.007059	0.011336

WQGIT Climate Allocation Decisions

- Year
 - · 2025 or 2035?
 - Link target year and implementation?
- Watershed loads first
 - Allocate all necessary reductions through planning target method
 - or
 - Take out jurisdictional climaterelated increases in loads first and allocate any remainder

- WWTP loads included in jurisdictional allocation calculations
 - Only non-WWTP sources
 - Increase WWTP with non-WWTP
 - Set WWTP at 6 and 4.5 TN
 - .22 and .364 TP
 - Set WWTP and 6 and 4 TN
 - .18 and .364 TP
- Open Water
 - Do not consider open water at this time for climate allocations

~0:3